
A Logic for Auditing Accountability in Cloud Computing Application

Asian Journal of Computer Science and Technology (AJCST)
Vol.2.No.2 2014 pp 36-40.

available at: www.goniv.com
Paper Received :05-03-2014
Paper Published:28-03-2014

Paper Reviewed by: 1. John Arhter 2. Hendry Goyal
Editor : Prof. P.Muthukumar

goniv Publications Page 36

A LOGIC FOR AUDITING ACCOUNTABILITY IN CLOUD
COMPUTING APPLICATION

K.Prabakaran1, M.Viswanathan2

Department of CSE,
Vel Tech Dr.RR & Dr.SR Technical University,

Tamil Nadu, India.

ABSTRACT

 Cloud computing present an innovative technique to progress to their exploit and liberate replica for IT

services base on the internet, by provided that for aggressively scalable and regularly virtualized resources
because a service above the internet. It enables enormously scalable services toward be by no problem
consumed above the internet on a desirable source. A most important characteristic of the cloud services to be
facilitate user’s data be usually process hazily in anonymous tackle that users do not hold or else control.
Whereas enjoy the ability bring by this original maturing technology, we suggest an innovative truly
decentralized within sequence dependability formation to maintain course of the actual observe of the user’s
data into the cloud. In fussy, we propose an object-centered shift to facilitate enable enclose our sorting
mechanism mutually through user’s data and policy. We influence the sorting mechanism toward together create
a dynamic and nomadic object , also near make sure to several access to user’s data determination to establish
legalization along with mechanical sorting. To construct stronger user’s control, we besides there spread audit
mechanism. We offer broad audition study to facilitate to illustrate the superior association and triumph of the
deliberate result.

Keywords-Cloud computing, Object-centered, Sorting mechanism, Innovative technique.

1. INTRODUCTION
 Cloud computing promising computing
model that enable well-situated along with on-
demand accessing of network with the purpose of
shared computing pool resources. This allows data
owners to move data to local computing also start
choosing to host their data in the cloud. The cloud
service providers offer SaS (Software-as-a-Service)
to diminish the burden of huge local data storage to
ease the maintenance cost by way of data storage
outsourcing. CSP like Microsoft, Google, Amazon,
and Yahoo are successfully dropped rates of
available storage in an internet. To conquer this, we
proposition a work of fiction approach, called Cloud
Information Accountability (CIA). Unlike seclusion
protection techniques that built on the hide-it-or-lose-
it perception, in order accountability focus on
maintenance the data usage apparent and visible. It
provides end-to-end accountability in an extremely
distributed craze and their pioneering features of CIA
lies in its facility of maintain lightweight along with
powerful accountability to combines aspect of usage
control, authorization and authentication. Data owner

that can be an organize generating sensitive data to
stored in cloud. CSP manages data owners files to
authorize and their clients who have right to access
the data in remote. The Trusted-Third-party (TTP)
authorized the users and data owners have communal
mistrust relations with CSP. The leakage towards on
data must be secured the outsourced data private. To
associates the accountability feature, we also develop
two distinct modes for auditing: Push and Pull mode.

 The push mode refers to logs start on
periodically sent to data owner or stakeholder even
as pull mode refers to an approach whereby the user
can recover the logs while needed. This issue
leverage as well as extend the programmable
potential of JAR files to automatically log the usage
of user’s data by some entity in cloud. Users send
data with logging and control policies that they want
to enforce, enclosed in JAR files, to CSP. The access
of any data triggers an automated and authenticated
logging mechanism. This type of enforcement refers
“strong binding” since the policies and logging
mechanism pass through the data. To copying this

A Logic for Auditing Accountability in Cloud Computing Application

goniv Publications Page 37

issue we providing the JARs with a central point of
contact which forms a link between them and user,
also it records the error correction information sent
by the JARs that allows and monitor the loss of any
logs from any of the JARs. Also JAR is not able to
contact its central point the access that encloses data
to deny. Our approach can handle personal
identifiable information provided they are stored as
image files that represent a common content end user
and organization (The popularity of Flicker is
proven).
Our main contributes are as follows:

 We intend a novel mechanical and
enforceable logging mechanism in cloud.

 Decentralized server toward require any
authentication or storage system.

 The architecture is a podium independent.
 The experiment conducts on real cloud test

bed. It results efficiency, scalability and
granularity of approach.

This paper is an extension of new contributions,
sequentially to strengthen the dependability of our
system in case of comprised JRE we combine
obvious hashing and integrity check. We also
reorganized the log records formation to provide
additional guarantee of authenticity and integrity.
After that we improve further potential attack
scenario to widen the security analysis. Finally new
experiments are reported and provided estimation
through the system performance.

2. RELATED WORK
 In this part, we initially assessment related works
address the cloud privacy and security. Then
Discuss about Proof-Carrying Authentication (PCA)
and Identity-Based Encryption (IBE).

2.1. Cloud Privacy and Security
 The information housed on the cloud is often seen
as valuable to individuals with malicious intent.
There is a lot of personal information and potentially
secure data and people store on their computers, and
this information is now being transferred to the
cloud. Pearson et al. have projected accountability
mechanisms to address seclusion concern of end
users and then develop a privacy manager. Hence the
processing output is defocused by seclusion manager
to retrieve the correct result. The author present a
layered architecture for addressing the end-to-end
trust management and accountability problem in
federated systems, in that mainly leverage trust
relationships for accountability, along with
authentication and anomaly detection. Further, the
monitoring and focuses on lower level monitoring of
system resources. Crispo and Ruffo propose related
to accountability in case of deletion. It is a
complementary work does not control the
information workflow in clouds. The researchers
have investigated accountability mostly as a provable

property through cryptographic mechanisms,
particularly in the context of e-commerce. Lee and
their colleagues proposing distributed approach to
accountability. The notion of accountability policies
is mainly focused on resource utilization and track of
sub jobs proposed at aggregate computing nodes,
quite than access control.

2.2. Proof-Carrying Authentication
 In the interest of security, most computer systems
restrict operations on resources like files and memory
location to specific users, called access control. More
interesting cases arise in distributed settings, as for
instance when an individual access their bank
statements online. In this case bank’s website must
whether determine the requesting client is authorized
to view the statements or not. To the irrespective of
exact setting, access control is usually engineered,
that each operation on the controlled resource is
intercepted by controlling program (called reference
monitor) that allows the operation to succeed only if
the calling program (called requester) has sufficient
permissions to complete it. In order to take a
decision, the reference monitor accomplishes two
tasks: authentication and authentication. Accessing
files and memory in local systems is relatively
straightforward in authentication also a much harder
in distributed scenarios. A proof is a textual and
completely rigorous representation of logic reference
and the requester provides the reference monitor a
proof that is allowed access. The monitor verifies the
proof is correct this does not require exploration and
computation is straight forward. These approaches
have been implemented in Grey systems at CMU and
are called PIA. The PCA includes a higher order
logic language that allows quantification over
predicates, and focuses on access control for web
services. The extent that helps maintaining safe, high
performance, mobile code, the PCA’s goal is highly
different from our research, as it focuses on
validating code, rather than monitoring. Mont et al.
who proposed an approach for strongly coupling
content with access control, using Identity-Based
encryption (IBE) also leverage IBE techniques in
different way. In additional work data provenance
aim to guarantees data integrity through secure data
provenance. Differently to propose data
accountability, to monitor the data usage that ensures
data access is tracked.

3. CLOUD INFORMATION
ACCOUNTABILITY (CIA)
 The CIA framework meets the design
requirements is discussed in preceding section. The
CIA framework proposed automated logging and
distributed auditing of relevant access performed by
an entity, carried out at any point of time at any CSP.
It contains two major components: logger and
harmonizer.

A Logic for Auditing Accountability in Cloud Computing Application

goniv Publications Page 38

3.1. Major components:
 The Components of CIA is logger and log
harmonizer. The logger is strongly coupled with user
data that downloaded when data are accessed and
copied. The particular instance or copy of user data is
responsible for logging access to that instance or
copy. The log harmonizer forms central component
that allows user to access log files. The logger
requires only minimal support from server (e.g.,
JVM installed) in order to deployed. The highly
distributed logging system meets first requirements
in tight coupling between data and logger. The error
correction information combine with encryption and
authentication mechanism to provides a robust a
reliable recovery mechanism. In this case,
harmonizer sends the key to client in a secure
exchange. It supports push and pull mode.

Fig.3.1.1: Overview of CIA framework.

 The push mode log the file to pushed back
to data owner periodically in automation. The pull
mode is a demand approach where log file is
obtained by data owner as often required. The
multiple loggers for same data items will be merge
by the log harmonizer before sending back to the
data owner, it also responsible for log file corruption.
To improve this performance logger and log
harmonizer are both implemented as lightweight and
portable JAR files, this implements automatic
logging functions.

3.2. Data Flow:
 The overall CIA framework, combining data,
users, logger and harmonizer creates a pair of public
and private keys based on IBE, which protect against
most prevalent attacks. The JAR file includes set of
access control specify how cloud servers, and
possibly other stack holders are access the content.
To authenticate the CSP to JAR using OpenSSL

based certificates, wherein a trusted certificate
authority certificates the CSP. Once the
authentication succeeds, the CSP allow accessing the
data enclosed in JAR. For each and every time
accessing the logging, the JAR automatically
generates log record, encrypt it using public key
distributed by data owner and store it along with
data. The unauthorized changes to encryption file
prevents by attackers. The data owner use same key
for all pair of JARs ores use different key pairs to
divide a JARs. The encrypted log files can later be
decrypted and the integrity is verified, this can be
access by data owners or stake holders for audit with
help of log harmonizer. This prevents various attacks
such as detecting copies of user data with encryption
mode; their logging mechanisms are neither
automatic nor distributed. The federal system for
logging require some data stayed on borders, that not
suitable in cloud.

4. DEPENDABILITY OF LOGS
 In this part, we discuss to ensure the reliability of
logs, in fussy we aim to prevent subsequent two
types of attacks. Primary, attacker might try to dodge
the auditing mechanism by store the JARs remotely,
corrupting the JAR, or annoying to prevent them
from communicating with the user. After that, the
attacker may try to negotiation the JRE used to run
the JAR files.

4.1: Log Correctness:
 To verify the integrity of logger component
consists two-step process:

 By launching the logger must repair along
with every kind of access is given, to
provide guarantee of integrity of the JRE.

 To calculate the hash values need to insert
the hash codes, the program traces of the
module being execute by logger module.

Once the logger component is launched it helps to
detect modifications in JRE, and the useful toward
verify if the original code flow execution is altered.
The logger and log harmonizer work in tandem to
carry out the integrity checks during runtime. The
hash function is initialized at the beginning of
program, this outcome variable is clear and there
hash value is reorganized every time there is a
variable assignment, branching, or looping.

A Logic for Auditing Accountability in Cloud Computing Application

goniv Publications Page 39

Fig.4.1.1: Oblivious hashing applied to logger.
4.2: Log Retrieval for Push and Pull mode:
 Pushing and pulling strategies have interesting
tradeoffs. The pushing strategy is beneficial when
there are a large number of accesses to data within a
short period of time. The pull strategy is most needed
when the data owner suspects some misuse of their
data; the pull mode allows him to monitor the usage
of their content immediately. Supporting both
pushing and pulling modes helps protecting from
some nontrivial attacks.

5. EXPERIMENTAL RESULTS
5.1: Log Creation Time:
 The time to create a log file increases linearly
with the size of log file. The time taken to create a
log file where their entities continuously access the
data, causing continuous logging. Specifically, the
time to create 100 KB file is about 114.5 ms time
take to create 1 MB file averages at 731 ms. By the
experiment amount of time is specified between
dumps, keeping other variables like space constraints
or network traffic in wits.

Fig.5.1.1: Time to create log files at unlike sizes.

5.2: Authentication Time:
 The time for authentication is too long, because
accessing enclosed data at bottleneck. To assess this,
the top node issue OpenSSl certificates for the
computing nodes and we deliberate the total time for
the OpenSSl authentication to be completed and the
certificate revocation to be checked. For one access
at a time, to find authentication time averages around
920 ms that proves not much overhead is added
during the phase. Further the recital is enhanced by
the caching certificates. When we consider the user
actions obtaining SMALL certificates, it averages at

1.2 min’s. The time for granting access the data items
in JAR file includes time to evaluate and enforce the
applicable policies and to locate the requested data
items. The number of log records generates at the
average time to log an action about 10 sec’s, which
includes the time taken by user to double click the
JAR or by server to run the script to open JAR.

5.3: Log Merging Time:
 To check the log harmonizer at bottleneck, we
measure the amount of time to require merging log
files. The exact number of records in common was
random for repetition of the experimentation time
was averaged over 10 repetitions.

Fig.5.3.1: Time to merge log files.

We tested the time to merge up to 70 log files of 100
KB, 300 KB, 500 KB, 700 KB, 900 KB and 1024
KB each. The time increases almost linearly to the
number of files and size of files, with the least time
being taken for merging two 100 KB log files at 59
ms, while the time to merge 70 log files of 1 MB was
2.35 min’s.

5.4: Size of the Data JAR files:
 Finally, we probe whether a single logger, used to
handle more than one file, results in storage
overhead. We measure and the size of loggers by
changeable the number and size of data items held by
them. We tested the increase in size of the logger
containing 10 content files of the same size as the file
size increases. The size of logger grows from 3,500
to 4,035 KB when the size of content items changes
from 200 KB to 1MB. Overall, due to the
compression provided by JAR files, the size of the
logger is dictated by the size of the largest files it
contains. Observe that we knowingly did not include
large log files, so as to focus on the overhead added
by having multiple content files in a single JAR.

A Logic for Auditing Accountability in Cloud Computing Application

goniv Publications Page 40

Fig.5.4.1: Size of the logger component.

6. CONCLUSION
 We introducing effective mechanism that
automatically log any access to the data in the cloud
together with an auditing mechanism. Data owner
can audit his content on cloud, and make sure that
content is safe. Apart from that we have enclosed
PDP methodology to enhance the integrity of
owner’s data using this mechanism usage data is
transparent. To developing a cloud in future store the
data in enormous security mode to reduce log record
generation by installing the JRE and JVM, to
authenticate the JAR.

REFERENCES

[1] Andrew W.Appel and Edward W.Felten, “Proof-
Carrying Authentication. In G.Tsudik, editor,
Proceedings of the 6th Conference on Computing
and Communications Security, pages 52-62,
Singapore, Nov 1999. ACM Press.

[2] D.Boneh and M.K.Franklin, “Identity-Based
Encryption from the Weil Pairing,” Proc .Int’l
Cryptography Conf. Advances in Cryptology,
pp.213-229, 2001.

[3] Hsio Ting Lin, Tzeng.W.G, “A Secure Erasure
Code-Based Cloud Storage System with Secure
Data Forwarding,” IEEE transactions on Parallel
and Distributed systems, 2012.

[4] J.H.Lin, R.L.Geiger, R.R.Smith, A.W.Chan and
S.Wanchoo, “Method for Authentication a Java
Archive (JAR) for Portable devices,” US Patent
6, 766, 353, July 2004. S.Pearson and
A.Charlesworth, “Accountability as a Way
Forward for Privacy Protection in Cloud,” proc.
First Int’l Conf. Cloud Computing, 2009.

[5] S.Sundareswaran, A.Squicciarini and D.Lin,
“Preventing Information Leakage from Indexing
in the Cloud,” Proc. IEEE Int’l Conf. Cloud
Computing, 2010.

[6] S.Sundareswaran, A.Squicciarini, D.Lin and
S.Huang, “Promoting Distributed Accountability
in the Cloud,” Proc, IEEE Int’l Conf. Cloud
Computing, 2011.

[7] SmithaSundareswaran, Anna C.Squicciarini,
Member, IEEE and Dan Lin, “Ensuring
Distributed Accountability for Data Sharing in
the Cloud,” IEEE transactions on Dependable
and Secure Computing, Vol9, No.4 Jul/Aug
2012.

 AUTHORS

First Author- K.Prabakaran, M.Tech-Scholar,
Department of CSE, Vel Tech Dr.RR & Dr.SR
Technical University, Tamil Nadu, India., Email:
legacyprabakar@gmail.com, Phone: 919940009213.
Second Author- M.Viswanathan, PhD-Scholar,
Department of CSE, Vel Tech Dr.RR & Dr.SR
Technical University, Tamil Nadu, India., Email:
viswamtech19@gmail.com,

